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Team members and roles
▸Prof. Richard Wirz – PI

– Director, Plasma & Space Propulsion Lab

▸Prof. Troy Carter – Co-I
– Director, Basic Plasma Science Facility

▸Dr. Pablo Guerrero
– PMI experiments and modeling

▸Angelica Ottaviano 
– PMI for complex surfaces

▸Anirudh Thuppul
– Plasma analysis

▸Mary Konopliv
– Advanced diagnostics
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Goal: Next generation of plasma-resilient/favorable materials
• Motivation: 

• Current fusion grade plasma-facing materials carry a significant 

annual cost and are not plasma-favorable

• Textured surfaces can reduce sputter yield temporarily

• Discovery/Innovation: 

• Volumetrically-architectured materials provide persistent sputter 

reduction

• Further and significant reduction is found by designing these 

materials to allow plasma-infusion

• Goals:

• Develop the next generation plasma-resilient/favorable materials 

that persistently reduce sputter for fusion devices: 

1. Demonstrate plasma-favorable materials by significant 

reduction (up to 80-90%) of plasma-contaminating sputterants

2. Reduce operational cost by increasing the lifetime (5X steady 

to 10X pulsed over SOTA) of critical fusion components
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Li G., Wirz R.E., “Persistent Sputtering Yield Reduction in Plasma-Infused Foams,” 

Physical Review Letters, 2021
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Major tasks, milestones, risks, and desired project outcomes
▸Objective

– Demonstrate multi-phase foams (MPF) that provide persistent 
sputter reduction up to 80-90% 

▸Approach
– Use experiments and validated models to iteratively design, test, 

and demonstrate the MPF design

▸Major tasks and milestones
– Year 1

• Critical MPF experiments to validate design models. 
• Design and manufacture MPF materials to capture the 

fusion-relevant design space.
– Year 2

• High-flux and high-fluence MPF testing and demonstration
• Heat Flux: 1-5 MW/m2 steady, 100-300 MW/m2 pulsed
• Targets

– Total Charge Fluence: 0.9-9 x 1012 C/m2

– Fusion electrodes: 108-9 C (Pulsed), 1010 C (Steady)
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Plasma

Foam

Plasma Material Interactions and Plasma-Infusion
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T2M and follow-on plans
▸Test & deployment plans

– Engage commercial fusion partners during MPF development
• Ensure MPF will improve life and performance for critical and challenging 

fusion surfaces
• Assess cost benefits from both life and performance with customer input

– Applications (Customers) include: 
• Z-pinch electrodes (Zap Energy)
• Plasma guns/injectors (General Fusion, HyperJet, TAE)
• Bias electrodes (TAE)
• Divertors (Commonwealth Fusion)

– Develop electrode and surface designs by end of Year 2 for Year 3+ 
deployment to customers
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▸Techno-economic targets
– Pursue ambitious targets in plasma-

facing components and electrodes 
performance

– Improve heat flux, life, total charge flux, 
and O&M maintenance

PLX-

• Reduced impurities
• Long-life surfaces

• Increased performance
• Lower maintenance costs

CT-injector plasma guns

Bias electrodes

Plasma Gun/
Electrodes

TAE Technologies 
C-2W (Norman)

Neutral Beam Injectors

Divertors

HyperJet 
Plasma Gun 
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BONUS SLIDES
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AMPERE: Computational Modeling 

Post-burn Φ21.7μmPre-burn Φ8.5μm

SPICY Suite: Surface Particle Interaction Codes with Yield
Theory + Mesh Geometries + MC Simulations + View Factor Modeling

Angular Distribution of SEs

primary beam
𝜃𝑖 = 0∘

Ions and Sputterants Electrons

Cage Geometry
~ foam structures
~ fuzz surfaces

Collision HeatmapSputtering angular 
distribution

AMPS: Analytical Model for 
Plasma Sputtering 
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Plasma-infused
(𝜉 > 1)

𝑓𝐴 = 𝜋, 𝑓𝛽 = 0.5

Plasma-facing
(𝜉 ≪ 1)

𝑓𝐴 = 1, 𝑓𝛽 = plot

Foam Dimensions

Effective Sputtering Area

Ballistic Deposition

➢ Realistic foam geometry
➢ Assumes ballistic 

deposition
➢ Sputter theory 

incorporated
➢ Accounts for plasma-

infused and plasma 
facing case


